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Abstract-A numerical simulation model for the convective mass transport occurring during the liquid 
phase epitaxial growth of GaInAs is presented. The mass transport and fluid flow equations in the liquid 
phase, mass transport equation in the solid phase and the relationships between concentrations and 
temperature obtained from the phase diagram constitute the governing equations. These equations together 
with appropriate interface and boundary conditions were solved numerically by the finite element method 
for a sandwich growth system. Numerical results show that the solutal convection plays an important role 
in this materials processing technique, enhances growth rate and influences compositional uniformity of 

the grown crystals. 0 1997 Elsevier Science Ltd. 

INTRODUCTION 

Liquid phase epitaxy (LPE) is a solution growth tech- 
nique for obtaining single crystal materials. In a typi- 
cal LPE setup the furnace temperature is reduced 
gradually upon putting the liquid solution and a single 
crystal substrate in contact. The gradual reduction in 
temperature results in supersaturated solution in the 
vicinity of the solution-substrate interface, leading to 
the growth of high quality, single crystal layers. In 
LPE, the growth of ternary alloy materials is much 
more complex than the growth of binary compounds. 
The reason for this is that in LPE growth of ternary 
alloys the solid and liquid phases are close to equi- 
librium at their interface, thus the substrate (or grown 
layer) interacts with the liquid solution and hence 
actively participates in the formation of the current 
layer. The active interaction between the solid and 
liquid phases in LPE growth can only be modeled by 
complicated interface conditions which make numeri- 
cal simulations extremely difficult. The numerical 
simulations that relied on a “starting solution” [l-3] 
is not general enough to simulate the complex growth 
processes of ternary alloys. In LPE crystal growth, 
convection in the liquid phase plays an important 
role [4-S]. An accurate simulation of the LPE growth 
process must include convection transport in the 
model. 

We here present a numerical simulation model for 
the LPE growth process of GalnAs ternary alloy. The 
main objective of this study is to determine optimum 
growth conditions for better crystals by providing a 

better understanding for the role of natural convection 
in LPE growth. The mathematical model developed 
here accounts for diffusive and convective mass trans- 
port and fluid flow in the liquid, diffusive mass trans- 
port in the solid and phase equilibrium and mass 
conservation at the growing interface. The governing 
equations particularized for an LPE sandwich growth 
system are solved by the finite element technique. 
Numerical simulation results show that solutal con- 
vection plays an important role in this materials pro- 
cessing technique, enhances growth rates and influ- 
ences compositional uniformity of the grown crystals. 

GOVERNING EQUATIONS 

For a 111-111-V ternary alloy, i.e. an A,B, _,C sys- 
tem (where A, B and C represent the components of 
the alloy), there are three compositional variables in 
the liquid phase, which must satisfy XL + XL +x: = 1 
where xi, x’, and x& are, respectively, the mole frac- 
tions of components A, B and C in the liquid. In this 
study A, B and C represent, respectively, gallium (Ga), 
indium (In) and arsenic (As). In the solid phase, only 
one compositional variable is needed to define solid 
composition distribution, since xi = 0.5x, XL = 
0.5( I -x) and .xg = 0.5 where xs\, xi and x;l represent, 
respectively, the mole fractions of components A, B 
and C in the solid. In this study, we choose xi and 
x& as the independent compositional variables in the 
liquid and xi, instead of x, as the compositional vari- 
able in the solid. All these variables are functions of 
time and space. 
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NOMENCLATURE 

A, B, C components of a 1&111-V ternary 

Dll 

DL- 

D”, 

alloy 
diffusion coeffient of element A in the 
liquid 
diffusion coefficient of element C in the 
liquid 
diffusion coefficient of element A in the 
solid 
lattice parameter of compound AC 
lattice parameter of compound BC 

lattice parameter of alloy 
growth rate 
Grashof number 
graviational constant 
height of the liquid solution 
Avogadro number 
pressure 
dimensionless pressure 
gas constant 
Schmidt number 
growth temperature 
melting point 
time 
velocity components 
dimensionless velocity components 

X, Y coordinates 
.Y solid composition 
xa, XL, xi. mole fractions of elements A, B 

and C in the liquid 
x2, xi, xf, mole fractions of elements A, B 

and C in the solid 
XL,,, ,& initial mole fractions of elements A 

and C in the liquid. 

Greek symbols 
entropy of fusion 

solutal expansion coefficients related 
to elements A and C 
activity coefficients in the liquid and 
solid phases 
activity coefficient in the 
stoichiometric liquid 
dimensionless coordinates 
dimensionless growth rate 
kinematic viscosity 
dimensionless time 
mass density of the liquid 
more density of the liquid 
more density of the solid. 

In LPE, growth is often realized through pro- 
grammed gradual temperature changes. Since the pro- 
cess is very slow and also the solution is a good heat 
conductor, temperature distribution is approximately 
uniform throughout the system, but its value changes 
with time. These temperature changes do not affect 
concentration distribution and fluid flow significantly, 
they mainly alter the phase relations at the crystal- 
liquid interface. Because they display equilibria, they 
can be viewed as external driving forces that act sim- 
ultaneously with internal forces due to constitutional 
equilibria, i.e. the system initial compositions. In 
general, macroscopic growth of an epitaxial layer is 
affected by mass and heat transfer as well as fluid flow. 
Since the system temperature is decreased very slowly 
during growth, in simulations the growth process is 
assumed to be isothermal. The heat transfer balance 
includes, in general, the contribution of latent heat at 
the interface. However, since the velocity of growth 
interface is very small in LPE, the contribution of 
latent heat to the energy balance at the interface is not 
significant and is, therefore, neglected. Furthermore, 
the solution is assumed to be an incompressible, New- 
tonian fluid, and the well-known Boussinesq approxi- 
mation holds (i.e. the density of the solution is con- 
stant in all equations except in the body force in the 
momentum equations). The solid phase is assumed to 
be rigid but the diffusion mass transport is allowed. 

The process and the system are assumed to be nom- 
inally two-dimensional. 

Under the above assumptions, the system of equa- 
tions governing the process consists of only the 
unsteady, two-dimensional, incompressible fluid flow 
and mass transport equations (these equations can 
also be obtained as a special case from the basic equa- 
tions given for liquid phase electroepitaxial growth 
of a general ternary system in ref. [9], by neglecting 
contributions from the electric field). The energy bal- 
ance is satisfied identically. The fluid flow equations 
take the following explicit forms in Cartesian coor- 
dinates. 

Incompressibility 

(1) 

Momentum 
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( a% a% a& 
+” ~+2ar’+~y 1 

+sv.4 (-+A - .&) + P&h - x&J1 (3) 

where u and v are the velocity components in the X 
and Y directions, respectively, t is time, p is pressure, 
p,, is the density of the solution, v is the kinematic 
viscosity, g is the gravitational constant, aA and bc are 
the solutal expansion coefficients related, respectively, 
to components A and C in the solution, and XL, and 
x&, are the initial mole fractions of components A and 
C in the solution, respectively. 

A detailed derivation of mass transport equations 
is given in refs. [9, lo]. The principle of conservation 
of mass for components A and C in the liquid phase 
and for A in the solid phase yields the following mass 
transport equations : 

in the liquid 

in the solid 

where L is the height of the liquid solution. Then the 
governing equations take the following dimensionless 
forms : 
in the liquid 

+ ataq d2u’ +w($ -1)+G.‘(~ - 1) (10) 

ax& ax& ax:. 
- fuax +vz = D;V’xl, at (4) 

ax:. , ax:. ,ah 
~+“ag+V~=scC 

in the solid 

) 
(5) 

where Da, D& and Da are, respectively, the diffus- 
ivities of components A and C in the liquid phase and 
that of component A in the solid phase, wS is the total 
mole density of the solid, and V2 z a2/aX2+a2jdY2. 
In equation (4), the total mole density in the liquid is 
assumed to be constant since it is mostly determined 
by the solvent. For most III-V alloys, the lattice par- 
ameters change notably from AC to BC leading to 
density variation. wS can be related to the solid com- 
position, x, by [1 1] 

ws = 8 

NAv [x&c + ( 1 - x)&J 3 
(6) 

where NAv is the Avogadro number, dAc and dBc are 
the lattice parameters of components AC and BC, 
respectively, and we have assumed that the lattice 
parameter of an alloy, dAc_Bc, changes linearly from 
riAc to & 

For computational convenience, we choose the fol- 
lowing dimensionless parameters 

The mass balance between the transported and 
incorporated solute species gives the mass balance 
interface conditions [8]. These conditions in their 
dimensionless forms are obtained as follows 

AJ(O.5 - .$) = A, ax:. 
arl 0 

(14) 

where we have used x& = 0.5 and x2, x]40 and x:” are 
the mole fractions at the interface, and 

where,fis the growth rate. 
Needed two more equations are obtained from the 

condition that the compositions of the phases must 
also satisfy the phase diagram at the interface. The 
liquid phase is assumed to be in equi!ibrium with the 
desired composition of the epitaxial layer to be grown. 
In general, the initial substrate has a different com- 
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position from the new layer. The initial condition is 
determined by phase diagram based on the growth 
temperature and the solid composition with which the 
liquid should be in equilibrium. The phase diagram 
for a ternary III-V system A,B,_K can be described 
by the following equations [IO] : 

where y’ and 11’ are the activity coefficients in the liquid 
and solid phase, respectively, ;“I are the activity 
coefficients in the stoichiometric liquid, ASI, and 
AS&. are the entropies of fusion, TLc and r;,. are the 
melting points, R is the gas constant, and T is the 
growth temperature. Here the solid solution of com- 
position A,B, _ ,C is treated as a mixture of the binary 
solids AC and BC, separate equilibrium conditions 
are written for AC in the solid phase, A and C in the 
ternary liquid and for BC in the solid phase and B 
and C in the liquid phase. Since the activity coefficients 
are related to the compositions and temperature, the 
phase diagram equations are nonlinear. Newton 
Raphson method is used to solve for compositions of 
A and C in the solution. In the solid phase, the initial 
condition is the substrate composition. 

It is important to note that, for ternary alloys, solid 
composition is not simply determined by phase diag- 
ram, but also by the ratio of transport rates of solutes. 
This makes numerical simulations for ternary systems 
much more complicated than for binary systems in 
which equilibrium deposition may be assumed. Unlike 
the pure diffusion case, the interface concentrations 
and the growth rate vary along the interface even 
for the constant temperature distribution because the 
concentration gradients vary along the interface due 
to the effect of natural convection. Therefore, the 
interface conditions must be enforced at all nodes 
along the interface. 

NUMERICAL SOLUTION METHOD 

The governing equations given in the preceding sec- 
tion are difficult to solve because of the complex inter- 
face conditions and the nonlinear coupling of the solid 
and liquid phase equations. The finite element method 
based on the penalty function formulation is used 
in this study. The advantage of the penalty function 
formulation is that the additional flow variable pres- 
sure is eliminated and so is the need for solving the 
incompressibility condition, which avoids the well- 
known difficulties of the mixed velocity/pressure for- 
mulation in incompressible flows and makes it easy to 
implement the complicated problem [13]. The Galer- 
kin method and 4-node quadrilateral elements are 
used to discretize the governing equations. To insure 

that the element possesses the mean incompressibility 
property, the reduced integration is used [ 141. All inte- 
grals are evaluated using a 2 x 2 Gaussian quadrature 
over each element, except for the penalized terms 
which are evaluated using l-point Gauss rule. The 
resulting set of first-order simultaneous ordinary 
differential equations with time derivatives are further 
discretized by fully implicit time-marching algorithm 
based on the finite difference method. The nonlinear 
algebraic equations resulting from the implicit 
approximation at each time step are solved by the 
NewtonRaphson iteration. 

Since the physical parameters are very different in 
the solid and liquid phases. a separated solution pro- 
cedure is applied to avoid numerical difficulties due 
to large differences in the matrix elements. i.e. the 
governing equations are solved separately for the solid 
and liquid phases, by using different mesh size and 
different time scale in the two phases. The two phases 
are actually coupled by the growth rate and the inter- 
face condition. An iteration procedure is then applied 
to obtain convergent solutions in the two phases and 
at the interface for each time step. Upon the con- 
vergence of the solution, growth thickness is readily 
computed by integrating the growth rate. Then the 
finite element mesh moves to track the moving inter- 
face. 

The transient solution of the governing equations 
for LPE growth of ternary alloys is very time consum- 
ing. A combined full and modified Newton-Raphson 
iteration scheme is used, namely, the full Newton 
Raphson method is used in the first iteration for each 
time step and the modified Newton-Raphson method 
is used during the subsequent iterations until the solu- 
tions for the bulk phases and the interfaces are 
converged. This solution scheme significantly reduces 
computation time since the modified Newton-Raph- 
son method requires fewer reformations and fac- 
torizations of the tangent stiffness matrix and still 
provides a reasonable convergence speed. 

The overall computational procedure consists of 
the following steps : 

(1) 

(2) 

(3) 

(4) 
(5) 

(6) 

(7) 

(8) 

(9) 

Set initial growth configuration and finite 
element mesh. 
Calculate initial composition of the solution 
using phase diagram. 
Guess initial interface condition based on the 
thermodynamic mode [8]. 
Start time integration. 
Perform Newton-Raphson iterations for finite 
element solutions of the bulk phases. 
Calculate interface concentrations and growth 
rate. 
Check convergence of the solutions for the bulk 
phases and the interfaces. 
Modify interface conditions and return to step 
5 if convergence is not achieved. 
Update finite element mesh and forward to next 
time step if convergence is achieved. 
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I I 
Ga-In-As solution 0.4 cm 

- 2cm-I 
Fig. 1. Schematic view of LPE growth configuration. 

RESULTS AND DISCUSSION 

The numerical simulations are carried out for a 
sandwich system consisting of a substrate solution- 
substrate arrangement for growth of Ga, ,In,,As from 
In-rich solution. The upper and lower substrates are 
InAs and GaAs, respectively. A schematic view of the 
growth cell is shown in Fig. 1. The initial temperature 
of the growth cycle is 700°C. The growth is achieved 
by reducing the temperature gradually at the rate of 
0.25”C min-‘. The initial solution composition deter- 
mined by phase diagram is xfc,, = 0.0194, x:, = 0.8732 
and XL, = 0.1074. The physical parameters used in 
simulations are listed in Table 1. Because few measure- 
ments are available to correlate accurately the physical 
parameters needed for numerical modelling, we have 
to rely on approximate expressions to evaluate those 
parameters for which experimental data are not avail- 
able. The solutal diffusivities are estimated using the 
expression in ref. [16] for self diffusion of indium 
liquid. The solid diffusivity is estimated following [ 11. 
The solutal expansion coefficients are estimated using 
the expression given in ref. [ 171. 

In the growth process, the deposition of the lower 
density solutes on the substrates increases the density 
of the solution in the vicinity of the substrates. There- 
fore, unstable stratification develops in the upper 
region, leading to buoyancy-induced convective flow 
which in turn affects mass transport in the solution. 
The evolution of the velocity field is shown in Fig. 2. 
The flow cells are mainly located in the vicinity of the 
upper substrate and move along the interface. The 
magnitude of the velocity generated by natural con- 

Table I. Physical parameters 

Parameters Symbols values 
- 

Solution viscosity [15] 
Solutal diffusivity of Ga 
Solutal diffusivity of As 
Solid diffusivity 
Solutal expansion coefficient 
Solutal expansion coefficient 
Mole density of the solution [16] 
Lattice parameter of GaAs [l I] 
Lattice parameter of InAs [I 1] 
Solution height 

vection is about 3 x lO-2 cm s-‘. The convective flow 
in the solution results in higher concentration gradi- 
ents near the upper substrate. Figure 3 shows the 
isoconcentrations of Ga in the solution. The higher 
concentration gradients at the upper substrate inter- 
face result in faster growth rate in the upper substrate 
than that in the lower substrate. The concentration 
patterns for As are similar since the same diffusion 
coefficient is used for the solutes in the simulations. 
Due to higher solubility, the mass flux of As is larger 
than that of Ga. The ratio of the mass fluxes affects 
growth rate and solid composition. 

In addition to enhancing mass transport rate, con- 
vection also influences composition uniformity of the 
grown crystals. Figure 4 shows a comparison between 
the composition profiles computed by diffusion and 
convection models for the conventional LPE with a 
constant cooling rate. As expected, the composition 
profiles of the grown crystals are significantly graded 
due to the continuous cooling and the solute depletion 
as growth proceeds. Since convection brings extra sol- 
utes to the vicinity of the growing substrate and leads 
to effective mixture of the solution, better composition 
uniformity is predicted by the convection model. 

The computed growth rates for the upper and lower 
substrates, averaged along the substrate surfaces, are 
shown in Fig. 5. At the beginning of the growth 
process, growth rates increase rapidly and remain 
identical for both substrates, indicating that growth is 
controlled by diffusion. After the onset of natural 
convection, bifurcation of growth rate curves for the 
upper and lower substrates takes place and the growth 
rate of the upper substrate increases continuously. 
After the development of convective flow, growth rate 
varies around an almost constant average value with 
small amplitudes and nearly steady-state growth takes 
place. The oscillatory patterns of the average growth 
rate curves are due to the non-uniform growth rates 
along the substrates which are attributed to the 
unsteady convective flow. At the end of the growth 
period, growth is stopped and temperature is held 
constant until the dissolution process begins. During 
this period, as can be seen from the curves, growth 
rates decrease first rapidly and then stop when solute 
elements are depleted completely in the solution. 

*O~3cm’s-l 

8.2 x 10 -‘cm2sm 
8.2 x lO~‘cm’sC 
1 x lO~‘*cm*s~ 

-0.12 
-0.19 

0.0596 mol cmm3 
5.6533 
6.0584 
0.4 cm 



3044 S. DOST et al. 

0.0”“’ I ” ” ” ” I ” ” ” ” 
0.0 0.2 0.4 0.6 0.8 1 

0.4 

0.3 

z- 
s 0.2 

z-7 

0.1 

‘\ . I  I I 

I I I /r,,, 

////////I 

_cTcI 

-\----------. 
__/x_____ 

:_-_____.. 

_  _ - _  . 

I I 

I I 

, I 

i I 

0.0 
0.0 0.2 0.4 0.6 0.6 

0.4 

0.3 

35 
so.2 

x 

0.1 

\ \ 1 , \ 

Iii\\ 

I / I / !  

/ I / , / 

, , , I 

0.2 0.4 0.6 0.6 

x(cm) 

Fig. 2. Evolution of velocity fields: (a) f = 10 min : (b) f = 20 min ; (c) f = 30 min. 
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Fig. 3. Evolution of concentration patterns: (a) f = 10 min; (b) f = 20 min; (c) t = 30 min. 
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The simulation results clearly show that the upper 
substrate grows more than the lower one. The thick- 
nesses of grown layers obtained from the simulation 
are about 46 pm for the upper substrate and 28 pm 
for the lower substrate after 40 min of growth. These 
values are very close to those obtained from exper- 
iments. The measured difference in grown thicknesses 
of the upper and lower substrates is about 14 ,um. 

CONCLUSION 

In this article a numerical simulation study for the 
role of solutal convection on the mass transport occur- 
ring during LPE growth of ternary IIIIV alloys has 
been presented. The governing equations of the liquid 
and solid phases, together with interface and phase 
equilibrium equations were solved using the finite 
element method and Newton-Raphson iteration. The 
simulation results presented in this article have dem- 
onstrated that natural convection plays a crucial role 
in liquid phase epitaxial growth of ternary alloys. 
Natural convection influences growth rates and com- 
position uniformity. Numerical results agree with 
experiments. 
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